Rhenium carbonyls containing pyridyl ligands incorporating an alkyne entity

Jiann T. Lin ${ }^{\text {a,* }}$, Shih-Sheng Sun ${ }^{\text {a }}$, Jiann Jung Wu ${ }^{\text {a }}$, Yen-Chywan Liaw ${ }^{\text {b }}$, Kuan-Jiuh Lin ${ }^{\text {a }}$
${ }^{\text {a }}$ Institute of Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
${ }^{\mathrm{b}}$ Institute of Biomedical Science, Academia Sinica, Nankang, Taipei, Taiwan

Received 6 December 1995; in revised form 24 January 1996

Abstract

Reactions of pyridyl ligands, 4,4'-dipyridylbutadiyne (DPB), 1,4-bis(4'-pyridylethynyl)benzene (BPEB), ferrocenyl-4-pyridylacetylene (FPA), 4-nitrophenyl-4'-pyridylacetylene (NPPA) and 4-aminophenyl-4'-pyridylacetylene (APPA), with $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{X}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$, cis$\operatorname{Re}(\mathrm{CO})_{4}(\mathrm{~L}) \mathrm{Cl} \quad\left(\mathrm{L}=\mathrm{PPh}_{3}, \quad \mathrm{P}(\mathrm{OMe})_{3}\right)$, and $\left[\operatorname{Re}(\mathrm{CO})_{3}\left(2,2^{\prime}-\mathrm{bipy}\right)(\mathrm{MeCN})\right]\left[\mathrm{PF}_{6}\right]$, provides fac- $\mathrm{Re}(\mathrm{CO})_{3}\left(\eta^{\prime}-\mathrm{DPB}\right)_{2} \mathrm{Cl}$ (1), fac$\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{PY})_{2} \mathrm{Br}(\mathbf{2}, \mathrm{PY}=\mathrm{FPA} ; \mathbf{3}, \mathrm{L}=\mathrm{NPPA} ; 4, \mathrm{~L}=\mathrm{APPA}),\left[\mathrm{fac}-\mathrm{Re}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}\right]_{2}(\mu-\mathrm{PY})(5, \mathrm{PY}=\mathrm{BPEB} ; 6, \mathrm{PY}=\mathrm{DPB})$, $\left.\left[f a c-\operatorname{Re}(\mathrm{CO})_{3}\left(\mathrm{P}(\mathrm{OMe})_{3}\right) \mathrm{Cl}\right]_{2}(\mu-\mathrm{DPB})(7), f a c-\operatorname{Re}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)(\mathrm{PY}) \mathrm{Cl}(\mathbf{8}, \mathrm{PY}=\mathrm{NPPA} ; 9, \mathrm{PY}=\mathrm{FPA}),[f a c-\mathrm{Re}(\mathrm{CO}))_{3}\left(2,2^{\prime}-\mathrm{bipy}\right)(\mathrm{PY})\right]\left[\mathrm{PF}_{6}\right]$ (10, $\mathrm{PY}=\mathrm{NPPA} ; 11, \mathrm{PY}=\mathrm{APPA} ; 12, \mathrm{PY}=\mathrm{FPA})$, and $\left.\left[\left(f a c-\operatorname{Re}(\mathrm{CO})_{3}\left(2,2^{\prime}-\text { bipy }\right)\right]_{2}(\mu-\mathrm{PY})\right][\mathrm{PF}]_{6}\right]_{2}(13, \mathrm{PY}=\mathrm{DPB} ; 14, \mathrm{PY}=\mathrm{BPEB})$. The energy of the metal to pyridyl π^{*} charge-transfer (MLCT) is investigated by electronic absorption spectra and cyclic voltammetry. X-ray structural analyses for $2 \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathbf{1 2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ were carried out. 2 $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{C}_{12} \mathrm{H}_{28} \mathrm{BrClN}_{2} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{Fe}_{2} \mathrm{Re}$; monoclinic; $P 2 / / n$, $Z=4 ; a=15.188(2), b=15.100(2), c=16.254(1) \AA ; \beta=102.22(1)^{\circ} ; R=0.047 ; R w=0.040 .12 \cdot 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}_{30} \mathrm{H}_{21} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{PFeRe}$; monoclinic; $P 2_{1} / n, Z=4 ; a=19.022(4), b=9.339(2), c=21.111(3) \AA ; \beta=116.156(9)^{\circ} ; R=0.043 ; R w=0.061$.

Keywords: Rhenium; Alkyne; Pyridene; Carbonyl

1. Introduction

Organometallic nonlinear optical materials have attracted considerable interest recently [1]. Our interest in this area led us to synthesize several pyridyl ligands incorporating an alkyne entity, as well as tungsten carbonyl complexes derived from these ligands [2]. The metal fragment in metal pyridyl complexes could function as an electron-donor [3] owing to the presence of the strong metal to ligand charger transfer (MLCT) normally present in pyridyl metal complexes [4], or as an electron-acceptor based on the σ-donating from the nitrogen atom to metal center [5]. Furthermore, the presence of carbonyl ligands should offer the opportunity for tuning the metal environment electronically and sterically via ligand substitution. Juxtaposition of the alkyne entity and ligands might also have applications in other aspects: (a) two or more metal centers could be held in the same molecule [6] for cooperative effect in

[^0]catalysis; (b) metal organic polymers could be derived from organometallic complexes containing these ligands [7]; (c) bridged dinuclear complexes could serve as models for the investigation of metal-metal interactions [8].

Since our first report on dinuclear tungsten carbonyls bridged by conjugated pyridyl ligands, our continual efforts are to vary metal moieties as well as pyridyl ligands in these systems. In this report, we will describe the syntheses and structural and spectroscopic studies of some rhenium carbonyl complexes which contain pyridyl ligands reported in Ref. [2].

2. Experimental section

2.1. Materials and apparatus

The ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectra were recorded on Bruker AC200 or AC300 spectrometers. IR spectra were measured with a Perkin-Elmer 880 spectrometer. Mass spectra (FAB) were recorded on a VG70-250S
mass spectrometer. Elementary analyses were performed on a Perkin-Elmer 2400 CHN analyzer. Electronic absorption spectra were obtained on a PerkinElmer Lambda 9 spectrometer. Electrochemical measurements were recorded on a Bioanalytical System BAS 100B. Cyclic voltammograms were obtained in deoxygenated dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $\mathrm{CH}_{3} \mathrm{CN}$ with a platinum working electrode, a platinum wire auxiliary electrode, and a saturated $\mathrm{Ag}-\mathrm{AgNO}_{3}$ reference electrode with 0.1 M tetrabutylammonium perchlorate (TBAP) as supporting electrolyte. In some cases, ferrocene, which was known to undergo a discrete one-electron transfer process, was added and used as internal reference for both the potential calibration and for reversibility criteria. In $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ the ferrocene has $E_{1 / 2}$ at 0.223 V relative to $\mathrm{Ag}-\mathrm{Ag}^{+}$and the anionic peak-cathodic peak separation is 105 mV . All E_{p} values for the complexes in this study are reported relative to ferrocene (i.e. 0.00 V for ferrocene). The concentration of the metal carbonyls in these measurements was ca. $10^{-3} \mathrm{M}$. The scan rate was $80 \mathrm{mV} \mathrm{s}^{-1}$. The measurements were uncorrected for liquid-junction potentials.

All reactions and manipulations were carried out under N_{2} with use of standard inert-atmosphere and Schlenk techniques. Solvents were dried by standard procedures. All column chromatography was performed under N_{2} with use of silica gel ($230-400$ mesh ASTM, Merck) as the stationary phase in a column 35 cm in length and 2.5 cm in diameter. $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{X}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ [9], cis- $\mathrm{Re}(\mathrm{CO})_{4}(\mathrm{~L}) \mathrm{Cl} \quad\left(\mathrm{L}=\mathrm{PPh}_{3}, \quad \mathrm{P}(\mathrm{OMe})_{3}\right)$ [10], $\left[\left(\operatorname{Re}(\mathrm{CO})_{3}\left(2,2^{\prime}\right.\right.\right.$-bipy $\left.)(\mathrm{MeCN})\right]\left[\mathrm{PF}_{6}\right]$ [11], ferrocenyl-4 pyridylacetylene (FPA), 4,4'-dipyridylbutadiyne (DPB), 1,4-bis(4'-pyridylethynyl)benzene (BPEB), 4-nitrophen-yl-4'-pyridylacetylene (NPPA), and 4-aminophenyl-4'pyridylacetylene (APPA), were prepared by published procedures [2].

2.2. $\mathrm{fac}-\mathrm{Re}(\mathrm{CO})_{3}\left(\boldsymbol{\eta}^{l}-\mathrm{DPB}\right)_{2} \mathrm{Cl}(1)$

A solution of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{Cl}(200 \mathrm{mg}, 0.55 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$ was added over a 4 h period to a refluxing solution of DPB ($250 \mathrm{mg}, 1.23 \mathrm{mmol}$) in 100 ml of benzene. The resulting solution was refluxed for an additional 4 h and the solvent was removed in vacuo. The residue was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane to provide the bright yellow powdery 1 in 83% yield (326 mg). MS (FAB): $m / e 715\left((\mathrm{M}+1)^{+},{ }^{185} \mathrm{Re}\right)$. Anal. Found: C, 52.01; H, 1.99; N, 7.64. $\mathrm{C}_{31} \mathrm{H}_{16} \mathrm{ClN}_{4} \mathrm{O}_{3} \mathrm{Re}$. Calc.: C, 52.14 ; H, 2.26; N, 7.85%.

2.3. $\mathrm{fac}-\mathrm{Re}(\mathrm{CO})_{3}(\mathrm{PY})_{2} \mathrm{Br}(2, \mathrm{PY}=F P A ; 3, \mathrm{PY}=\mathrm{NPPA}$; 4, $P Y=A P P A$)

Essentially the same procedures were followed for the syntheses of 2-4, and only the preparation of 2 will be described in detail. A benzene solution (70 ml)
containing $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{Br}(130 \mathrm{mg}, 0.32 \mathrm{mmol})$ and FPA ($200 \mathrm{mg}, 0.70 \mathrm{mmol}$) was refluxed in the dark for 16 h . After removal of the solvent, the crude product was triturated with hexane and washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50$ ml) to provide red powdery 2 in 88% yield (180 mg). MS (FAB): $924\left((M+1)^{+},{ }^{185} \mathrm{Re}\right)$. Anal. Found: C, 47.73; H, 2.89; N, 2.66. $\mathrm{C}_{37} \mathrm{H}_{26} \mathrm{BrFe}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Re}$. Calc.: C, 48.05; H, 2.81; N, 3.03\%.

Yellow orange complex 3 was isolated in 82% yield. Anal. Found: C, 43.72; $\mathrm{H}, 1.91 ; \mathrm{N}, 6.74 . \mathrm{C}_{29} \mathrm{H}_{16} \mathrm{BrN}_{4}-$ $\mathrm{O}_{7} \mathrm{Re}$. Calc.: C, $43.60 ; \mathrm{H}, 2.00 ; \mathrm{N}, 7.02 \%$.

Yellow complex 4 was isolated in 37% yield. MS (FAB): $m / e 738\left((\mathrm{M}+1)^{+},{ }^{185} \mathrm{Re}\right)$. Anal. Found: C, 46.86; H, 2.93; N, 7.39. $\mathrm{C}_{29} \mathrm{H}_{20} \mathrm{BrN}_{4} \mathrm{O}_{3} \mathrm{Re}$. Calc.: C, 47.15; H, 2.80; N, 7.59\%.

```
2.4. [fac-Re(CO) \(\left.{ }_{3}(L) C l\right]_{2}(\mu-P Y) \quad\left(5, L=P P h_{3}, P Y=\right.\)
\(B P E B ; 6, L=P P h_{3}, P Y=D P B ; 7, L=P(O M e)_{3}, P Y\)
\(=D P B\) )
```

Essentially the same procedures were followed for the syntheses of 5-7, and only the preparation of 5 will be described. A benzene solution (80 ml) containing cis $-\operatorname{Re}(\mathrm{CO})_{4}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}(1.00 \mathrm{~g}, 1.68 \mathrm{mmol})$ and BPEB ($250 \mathrm{mg}, 0.89 \mathrm{mmol}$) was refluxed in the dark for 16 h . The solution was concentrated to ca. 40 ml and the slow addition of hexane (50 ml) led to the precipitation of orange-yellow solid, which was chromatographed on silica gel. Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane ($1: 1$) gave 5 ($270 \mathrm{mg}, 21 \%$) as a yellow solid. MS (FAB): $m / e 1414$ $\left(\mathrm{M}^{+},{ }^{185} \mathrm{Re}\right)$. Anal. Found: C, 52.11; H, 3.02; N, 2.14. $\mathrm{C}_{62} \mathrm{H}_{42} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{Re}_{2}$. Calc.: C, 52.55; H, 2.99; N , 1.98\%.

Deep yellow complex 6 was eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ hexane (3:2). Yield: 29%. MS (FAB): $m / e 1337$ (M ${ }^{+}$, ${ }^{185} \mathrm{Re}$). Anal. Found: C, 49.55; H, 3.10; N, 1.89. $\mathrm{C}_{56} \mathrm{H}_{38} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{Re}_{2}$. Calc.: C, $50.19 ; \mathrm{H}, 2.86 ; \mathrm{N}$, 2.09\%.

Yellow complex 7 was eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Yield: 33\%. MS (FAB): $m / e 1065\left((\mathrm{M}+1)^{+},{ }^{185} \mathrm{Re}\right)$. Anal. Found: C, 29.69; H, 2.38; N, 2.61. $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{P}_{2}$ Re_{2}. Calc.: C, 29.89 ; H, 2.49 ; N, 2.68%.

> 2.5. $\mathrm{fac}-\mathrm{Re}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)(\mathrm{PY}) \mathrm{Cl}(8, P Y=N P P A ; 9, P Y$ $=F P A)$

The preparation of $\mathbf{8}$ or $\mathbf{9}$ is similar to the procedure described for 6 except that an equimolar quantity of PY was used. Deep yellow powdery 8 was obtained in 33% yield. MS (FAB): $m / e 794\left(\mathrm{M}^{+},{ }^{187} \mathrm{Re}\right)$. Anal. Found: C, 51.29; H, 2.69; N, 3.54. $\mathrm{C}_{34} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{5}$ PRe. Calc.: C, $51.52 ; \mathrm{H}, 2.90 ; \mathrm{N}, 3.54 \%$. Orange powdery 9 was obtained in 46% yield. MS (FAB): $m / e 821((\mathrm{M}+\mathrm{l}-$ $\left.\mathrm{Cl})^{+},{ }^{187} \mathrm{Re}\right)$. Anal. Found: C, $53.16 ; \mathrm{H}, 3.12 ; \mathrm{N}, 1.32$. $\mathrm{C}_{38} \mathrm{H}_{28} \mathrm{ClFeNO}_{3}$ PRe. Calc.: $\mathrm{C}, 53.36 ; \mathrm{H}, 3.28 ; \mathrm{N}$, 1.64%.
2.6. $\left[f a c-R e(C O)_{3}\left(2,2^{\prime}-\right.\right.$ bipy $\left.)(P Y)\right]\left[P F_{6}\right] \quad(10, \quad P Y=$ $N P P A ; 11, P Y=A P P A ; 12, P Y=F P A)$

Essentially the same procedures were followed for the syntheses of $\mathbf{1 0 - 1 2}$, and only the preparation of $\mathbf{1 0}$ will be described. A THF solution (150 ml) containing $\left[\operatorname{Re}(\mathrm{CO})_{3}\left(2,2^{\prime}\right.\right.$-bipy $\left.)(\mathrm{MeCN})\right]\left[\mathrm{PF}_{6}\right](400 \mathrm{mg}, 0.66 \mathrm{mmol})$ and NPPA ($190 \mathrm{mg}, 0.85 \mathrm{mmol}$) was refluxed at $80^{\circ} \mathrm{C}$ in the dark for 5 h . The solvent was removed in vacuo and the residue was washed with $\mathrm{Et}_{2} \mathrm{O}$ to afford yellow-orange powdery 10 in a yield of 72% (380 mg). MS (FAB): $m / e 796\left(\mathrm{M}^{+},{ }^{187} \mathrm{Re}\right)$. Anal. Found: C, 39.27; H, 2.13; N, 6.70. $\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{5}$ PRe. Calc.: C, 39.24; H, 2.01; N, 7.04\%.

Orange-red complex 11 was isolated from column chromatography using THF- $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 9)$ as eluent. Yield: 50\%. Anal. Found: C, 40.86; H, 2.16; N, 7.60. $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{3}$ PRe. Calc.: C, 40.78 ; $\mathrm{H}, 2.37$; N, 7.32%.

Orange-yellow complex 12 was obtained in 89% yield. Anal. Found: $\mathrm{C}, 42.23 ; \mathrm{H}, 2.33 ; \mathrm{N}, 4.58$. $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{~F}_{6} \mathrm{FeN}_{3} \mathrm{O}_{3}$ PRe. Calc.: C, 41.96; H, 2.45; N, 4.90\%.

2.7. $\left[\left\{f a c-R e(C O)_{3}\left(2,2^{\prime}-\text { bipy }\right)\right\}_{2}(\mu-D P B)\right]\left[P F_{6} J_{2}(13)\right.$

A mixture of $\left[\operatorname{Re}(\mathrm{CO})_{3}\left(2,2^{\prime}\right.\right.$-bipy $\left.)(\mathrm{MeCN})\right]\left[\mathrm{PF}_{6}\right]$ (400 $\mathrm{mg}, 0.66 \mathrm{mmol}$) and DPB ($70 \mathrm{mg}, 0.34 \mathrm{mmol}$) in THF
$(100 \mathrm{ml})$ was refluxed at $70^{\circ} \mathrm{C}$ in the dark for 2 h . The yellow precipitate was washed with THF ($3 \times 50 \mathrm{ml}$) to afford 13 in 30% yield (260 mg). Anal. Found: C, 35.43; H, 1.96; N, 5.99. $\mathrm{C}_{40} \mathrm{H}_{24} \mathrm{~F}_{12} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{Re}_{2}$. Calc.: C, 35.65; H, 1.78; N, 6.24\%.

2.8. $\left[\left\{f a c-R e(C O)_{3}\left(2,2^{\prime}-b i p y\right)\right\}_{2}(\mu-B P E B)\right]\left[P F_{6}\right]_{2}$ (14)

Complex 14 was synthesized by the same procedure as for the synthesis of $\mathbf{1 3}$ except that the crude product was further dissolved in MeCN and filtered through Celite. Removal of the solvent and trituration of the residue with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$ gave 14 as orange-yellow powders (55\%). Anal. Found: C, 39.22; H, 1.90; N, 5.79. $\mathrm{C}_{46} \mathrm{H}_{28} \mathrm{~F}_{12} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{Re}_{2}$. Calc.: $\mathrm{C}, 38.81 ; \mathrm{H}, 1.97$; N, 5.91\%.

2.9. Crystallographic studies

Crystals of $2 \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $12 \cdot 2 \mathrm{H}_{2} \mathrm{O}$ were grown by slow diffusion of hexane into a concentrated solution of relevant complexes in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Diffraction measurements were made on an Enraf-Nonious CAD4 diffractometer with the $\theta-2 \theta$ scan mode. Unit cells were determined by centering 25 reflections in the suitable 2θ range. Other relevant experimental details are listed in Table 1. All data reduction and refinements were car-

Table 1
Crystal data for compounds $2 \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathbf{1 2} \cdot \mathrm{H}_{2} \mathrm{O}$

	2. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$12 \cdot 2 \mathrm{H}_{2} \mathrm{O}$
Formula	$\mathrm{C}_{38} \mathrm{H}_{28} \mathrm{BrCl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Fe}_{2} \mathrm{Re}$	$\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{PFeRe}$
Formula weight	1009.35	894.55
Crystal size (mm^{3})	$0.10 \times 0.10 \times 0.25$	$0.16 \times 0.16 \times 0.20$
Crystal system	monoclinic	monoclinic
Space group	$P 2_{1} / n$	$P 2_{1} / n$
$a(\AA)$	15.188(2)	19.022(4)
b (A)	15.100(2)	$9.339(2)$
$c(\AA)$	$16.254(1)$	21.111(3)
β (deg)	102.22(1)	116.156(9)
$V\left(\AA^{3}\right)$	3643.2(7)	3366(1)
Z	4	4
$D_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.840	1.765
$F(000)$	1960	1744
Radiation	Mo K $\alpha(\lambda=0.7107 \AA)$	Mo K $\alpha(\lambda=0.7107 \AA)$
$\mu\left(\mathrm{cm}^{-1}\right)$	52.7	41.7
Transmission factors (maximum-minimum)	1.00-0.67	1.00-0.56
2θ range (deg)	2.0-45	2.0-45
Octants	$\pm h(-16-15)$	$\sim h(-20-18)$
	$+k(0-16)$	$+k(0-10)$
	$+l(0-17)$	$+l(0-22)$
Number of unique reflections	4743	4377
Number of reflections with $I>n \sigma$	$3013(n=2.5)$	2682 ($n=2.0$)
Number of variables	421	423
$R^{\text {a }}, R_{\text {w }}{ }^{\text {b }}$	0.047, 0.040	0.043, 0.061
Goodness of fit ${ }^{\text {c }}$	1.63	2.87
Maximum Δ / σ	0.077	0.048

$\overline{{ }^{\mathrm{a}} R=\Sigma\left\|F_{0}\left|-\left|F_{\mathrm{c}} \| / \Sigma\right| F_{0}\right| .{ }^{\mathrm{b}} R w=\left[\Sigma w\left(\left|F_{0}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma w\left|F_{0}\right|^{2}\right]^{1 / 2} ; \quad w=1 /\left[\sigma^{2}\left(F_{0}\right)+k F_{0}^{2}\right] \text {. For } 2 \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}, k=0.00005 \text {; for }\right.}$ $12 \cdot 2 \mathrm{H}_{2} \mathrm{O}, k=0.0001$. ${ }^{c}$ Goodness of fit, $S=\left[\left(\sum w\left(\left|F_{0}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / N_{\mathrm{obs}}-N_{\mathrm{var}}\right)\right]^{1 / 2} ; N_{\mathrm{obs}}=$ no. of observed reflections, $N_{\mathrm{var}}=$ no. of variables.
ried out on a MicroVax 3800 computer using nRCvax [12] programs. Intensities were collected and corrected for decay, absorption (empirical, Psi-scan) and Lp effects. The structures were solved using a combination of
direct methods [13] and difference Fourier methods and refined by full-matrix least squares techniques. The Br and $\mathrm{C} 3-\mathrm{O} 3$ ligands in $2 \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ were found to be disordered and with a 40% occupancy for each. The

Table 2
Atomic coordinates for $2 \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$

Atom	x	y	z	$B_{\text {iso }}\left(\AA^{2}\right)$
Re	0.27465(4)	0.05442(4)	0.13547(4)	3.31(3)
Fel	$0.94144(14)$	-0.05836(16)	0.27554(12)	4.06 (11)
Fe 2	$0.10346(17)$	$0.69917(15)$	-0.06425(15)	4.86(13)
Br	0.30123	0.00435	-0.00692	$4.89(10)$
O1	$0.0740 \times 8)$	$0.0186(9)$	0.0753(8)	7.7(7)
O2	$0.2875(10)$	-0.1380(8)	0.1919(8)	8.3(9)
O3	0.24006	0.13618	0.29831	$11.9(13)$
C1	0.1498(12)	0.0348(9)	$0.0976(9)$	4.4(9)
C2	0.2859(12)	-0.0648(13)	$0.1717(10)$	5.4(10)
C3	0.24904	0.08744	0.24800	2.6 (7)
C4	$0.4617(10)$	0.0628(10)	0.2599(8)	3.8(8)
C5	$0.5527(10)$	0.0662(10)	0.2879(8)	4.1(8)
C6	0.6092(9)	0.0808(8)	0.2320(9)	3.1(7)
C7	0.5661(11)	$0.1015(10)$	0.1503(9)	$4.0 \times 8)$
C8	$0.4740(11)$	0.0990(10)	0.1262(9)	4.0 (8)
C9	0.7058(11)	0.0781(9)	$0.2595(10)$	$4.0(8)$
Cl 10	0.7832(11)	$0.0664(10)$	0.2799(9)	3.9 (8)
C11	0.8799(10)	$0.0512(11)$	$0.3066(9)$	4.2(9)
C12	0.9454(13)	$0.0745(11)$	$0.2638(13)$	6.8(12)
C13	1.0285(11)	$0.0428(13)$	$0.3123(14)$	6.4(11)
C14	$1.0119(14)$	-0.0015(15)	$0.3837(12)$	7.5(12)
C15	$0.9173(12)$	$0.0040(12)$	$0.3813(9)$	5.8(10)
C16	$0.8446(14)$	-0.1333(17)	$0.1994(16)$	8.3(15)
C17	0.9177(18)	-0.1096(15)	$0.1590(11)$	7.8(13)
C18	0.9999 (14)	-0.1433(16)	0.2055(14)	7.2(13)
C19	$0.9800(15)$	-0.1893(13)	$0.2724(15)$	7.4(14)
C20	0.8853(16)	-0.1817(13)	$0.2694(16)$	7.6 (16)
C21	$0.2843(11)$	0.2643(9)	$0.1442(8)$	$3.7(8)$
C22	0.2770 (12)	$0.3515(9)$	$0.1171(9)$	4.9 (9)
C23	$0.2437(9)$	$0.3699(10)$	$0.0347(10)$	3.5 (8)
C24	$0.2234(13)$	$0.3004(11)$	$-0.0187(9)$	5.7(11)
C25	$0.2345(13)$	$0.2146(10)$	$0.0128(10)$	5.7(11)
C26	0.2340 (10)	$0.4588(12)$	$0.0064(9)$	4.5(9)
C27	$0.2233(10)$	$0.5334(11)$	-0.0191(9)	4.1(8)
C28	$0.2146(11)$	$0.6234(10)$	$-0.0510(10)$	4.2(9)
C29	$0.1855(11)$	$0.6452(10)$	-0.1362(10)	5.2(9)
C30	$0.1844(13)$	$0.7400(12)$	-0.1516(13)	6.4(12)
C31	$0.2165(13)$	$0.7729(11)$	-0.0605(16)	7.6 (14)
C32	$0.2338(12)$	0.7022(12)	-0.0048(11)	5.6(10)
C33	-0.0258(16)	$0.658(3)$	-0.1069(20)	10.7(20)
C34	$0.0085(22)$	$0.6314(18)$	-0.022(3)	11.6(27)
C35	$0.0325(19)$	$0.703(3)$	0.0271 (17)	10.9(19)
C36	$0.0128(17)$	$0.7766(14)$	-0.0232(19)	8.1(15)
C37	-0.0221(12)	$0.7500(16)$	-0.1027(16)	6.0 (13)
N1	$0.4195(7)$	$0.0784(7)$	$0.1791(7)$	$3.1(6)$
N2	$0.2661(7)$	0.1949 (7)	0.0941 (7)	3.1(6)
ClI	$1.0045(8)$	0.2199(5)	$0.4855(5)$	17.3(8)
Cl 2	$0.9623(10)$	0.3518(7)	0.3711 (6)	23.8(11)
C	$1.018(3)$	0.268(3)	$0.4012(16)$	22.9(33)
Br	0.30123	0.00435	-0.00692	4.89
O 3	0.24006	0.13618	0.29831	12
C3	0.24904	0.08744	0.24800	2.6
Br^{\prime}	0.25172	0.10522	0.28088	4.50
C3'	0.28855	0.01115	0.03178	6.0
O3'	0.31598	-0.00045	-0.04042	9.6

oxygen atom (O5) in one of the $\mathrm{H}_{2} \mathrm{O}$ molecules in $12 \cdot 2 \mathrm{H}_{2} \mathrm{O}$ was also disordered with a 50% occupancy. Except for $\mathrm{Br}, \mathrm{Br}^{\prime}, \mathrm{C} 3, \mathrm{C}^{\prime}, \mathrm{O} 3$, and $\mathrm{O3}^{\prime}$ atoms in 2, all non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included in the structure factor calculation in idealized positions with $d_{\mathrm{C}-\mathrm{H}}=0.95 \AA$. The final positional parameters are listed in Tables 2 and 3 , and selected interatomic distances and bond angles are given in Table 4.

3. Results and discussion

Previously we synthesized [2] tungsten carbonyls containing pyridyl ligands, BPEB, DPB, FPA, NPPA, and APPA. We have now extended our studies to rhenium complexes. In accordance with literature reports for the syntheses of $f a c-\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{~L})\left(\mathrm{L}^{\prime}\right) \mathrm{X}\left(\mathrm{L}, \mathrm{L}^{\prime}\right.$: N or P donor ligands) [14], thermal reactions of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{X}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ and cis $-\mathrm{Re}(\mathrm{CO})_{4}(\mathrm{~L}) \mathrm{Cl},(\mathrm{L}=$

Table 3
Atomic coordinates for $12 \cdot 2 \mathrm{H}_{2} \mathrm{O}$

Atom	x	y	z	$B_{\text {iso }}\left(\AA^{2}\right)$
Re	0.22818(4)	0.2505 (1)	$0.14081(3)$	3.40 (4)
Fe	0.3542 (2)	-0.0446(4)	-0.2682(2)	6.2(2)
P	0.0446(3)	-0.0790(6)	0.8556(3)	5.7(3)
F1	$0.035(2)$	-0.081(2)	$0.7839(9)$	19(2)
F2	$0.057(1)$	-0.077(2)	0.9327(8)	19(2)
F3	0.0052(9)	-0.230(2)	0.843(1)	16(1)
F4	0.0847(7)	$0.072(1)$	0.8731(6)	8.6(8)
F5	-0.0343(8)	-0.0088(20)	0.832(1)	16(2)
F6	$0.1246(8)$	-0.151(2)	$0.886(1)$	15(1)
O1	$0.1714(7)$	-0.057(1)	0.1450 (7)	6.2(9)
O 2	$0.3747(7)$	$0.188(1)$	0.2759(6)	$6.2(8)$
O3	$0.1534(8)$	$0.366(1)$	$0.2317(6)$	5.8(8)
N1	$0.2811(7)$	$0.181(2)$	0.0709(6)	3.7(8)
N2	$0.2608(7)$	$0.466(1)$	$0.1252(6)$	3.4(8)
N3	$0.1298(7)$	$0.325(2)$	$0.0444(6)$	3.7(7)
C1	$0.192(1)$	0.060(2)	0.1443(8)	4.3(10)
C2	0.320 (1)	$0.208(2)$	0.2251(8)	4.5(11)
C3	$0.182(1)$	$0.321(2)$	0.1992(8)	4.0 (10)
C4	0.2407(9)	$0.103(2)$	0.0141(9)	4.3(10)
C5	0.270 (1)	0.056(2)	-0.0317(9)	4.8(11)
C6	0.348(1)	0.091(2)	-0.0196(9)	4.7(11)
C7	0.388 (1)	$0.174(3)$	0.039(1)	$7.6(15)$
C8	0.355(1)	$0.214(2)$	0.0843(9)	$6.0(13)$
C9	0.375(1)	0.046(3)	-0.067(1)	6.0 (13)
C10	0.393(1)	$0.013(2)$	-0.1092(9)	5.1(12)
C11	0.420 (1)	-0.035(2)	-0.159(1)	6.7(15)
C12	$0.417(1)$	-0.176(3)	-0.183(1)	7.9(16)
C13	0.449(2)	-0.170(3)	-0.233(1)	11(2)
C14	0.471 (1)	-0.033(3)	-0.0239(1)	$9.7(20)$
C15	$0.453(1)$	$0.051(3)$	-0.193(1)	$8.2(17)$
C16	0.267 (1)	$0.103(3)$	-0.315(1)	9.3 (17)
C17	0.240 (1)	-0.018(3)	-0.293(1)	$11(2)$
C18	0.247(2)	-0.142(3)	-0.331(1)	11(2)
C19	0.281(2)	-0.097(3)	-0.371(1)	$9.5(20)$
C20	$0.294(1)$	0.044(3)	-0.365(1)	8.7(18)
C21	$0.328(1)$	$0.532(2)$	$0.1672(8)$	4.4(10)
C22	0.348 (1)	$0.664(2)$	0.1541(9)	$5.0(11)$
C23	0.297 (1)	$0.733(2)$	0.097 (1)	5.8 (12)
C24	0.226 (1)	0.670(2)	$0.0516(9)$	5.1(11)
C25	0.2097(9)	$0.537(2)$	$0.0651(8)$	3.7(10)
C26	$0.1365(9)$	$0.461(2)$	$0.0212(8)$	3.3(9)
C27	0.078 (1)	$0.514(2)$	-0.0395(8)	4.3(10)
C28	$0.013(1)$	$0.434(2)$	-0.0772(9)	$5.1(11)$
C29	$0.0057(10)$	0.300(2)	-0.0534(9)	4.7(10)
C30	0.0649(9)	$0.251(2)$	$0.0075(8)$	$4.4(10)$
O4	$0.4971(7)$	0.5379(16)	$0.1051(7)$	6.8(9)
O5	$0.4246(12)$	0.7253(25)	$0.0000(11)$	4.4(5)
O5'	$0.3894(14)$	0.617(3)	-0.0125(13)	5.4(6)

Table 4
Selected bond distances (\AA) and angles (deg) for $2 \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $12 \cdot 2 \mathrm{H}_{2} \mathrm{O}$

	2	12
$\mathrm{Re}-\mathrm{Br} ; \mathrm{Re}-\mathrm{Br}^{\prime}$	2.55; 2.58	
Re-N1	2.19(1)	2.22(1)
$\mathrm{Re}-\mathrm{N} 2$	2.22(1)	2.18(1)
$\mathrm{Re}-\mathrm{N} 3$		2.18(1)
$\mathrm{Re}-\mathrm{Cl}$	1.89(2)	1.92(2)
Re-C2	1.89 (2)	1.90 (2)
$\mathrm{Re}-\mathrm{C} 3$; $\mathrm{Re}-\mathrm{C} 3^{\prime}$	2.01; 1.86	1.92(2)
Fe or $\mathrm{Fe} 1-\mathrm{Cl} 1$; $\mathrm{Fe} 2-\mathrm{C} 28$	2.03(2); 2.01(2)	2.08(2)
Fe or $\mathrm{Fe} 1-\mathrm{Cl} 2 ; \mathrm{Fe} 2-\mathrm{C} 29$	2.02(2); 2.05(2)	2.07(2)
Fe or $\mathrm{Fe} 1-\mathrm{Cl3}$; $\mathrm{Fe} 2-\mathrm{C} 30$	2.03(2); 2.03(2)	2.00(2)
Fe or $\mathrm{Fe} 1-\mathrm{C} 14$; $\mathrm{Fe} 2-\mathrm{C} 31$	2.04(2); 2.04(2)	2.04(2)
Fe or $\mathrm{Fe} 1-\mathrm{C} 15 ; \mathrm{Fe} 2-\mathrm{C} 32$	2.06(2); 2.01(2)	2.06 (2)
Fe or $\mathrm{Fe} 1-\mathrm{C} 16 ; \mathrm{Fe} 2-\mathrm{C} 33$	2.05(2); 2.04(2)	2.05 (2)
Fe or $\mathrm{Fe} 1-\mathrm{C} 17$; $\mathrm{Fe} 2-\mathrm{C} 34$	2.01(2); 2.01(3)	2.02(2)
Fe or $\mathrm{Fe} 1-\mathrm{C18}$; $\mathrm{Fe} 2-\mathrm{C} 35$	2.04(2); 2.01(2)	2.09(3)
Fe or $\mathrm{Fe} 1-\mathrm{Cl} 9$; $\mathrm{Fe} 2-\mathrm{C} 36$	2.06(2); 2.02(2)	2.06 (2)
Fe or $\mathrm{Fe} 1-\mathrm{C} 20 ; \mathrm{Fe} 2-\mathrm{C} 37$	2.04(2); 2.03(2)	2.02(2)
C1-O1	1.16(2)	1.17(2)
C2-O2	1.15(2)	1.14 (2)
C3-O3; $\mathrm{Cl}^{\prime}-\mathrm{O}^{\prime}$	1.13; 1.34	1.12(2)
N1-C4; N1-C8	1.35(2); 1.35(2)	1.32(2); 1.34(2)
N2-C21; N2-C25	1.32(2); 1.34(2)	1.34(2); 1.38(2)
N3-C26; N3-C30		1.39(2); 1.33(2)
C9-C10; C26-C27	1.16(2);1.20(2)	1.13 (2)
C1-Re-C2	88.3(7)	88.1(7)
C1-Re-C3; $\mathrm{C} 1-\mathrm{Re}-\mathrm{C} 3^{\prime}$	87.7; 87.1	91.2(7)
$\mathrm{C} 1-\mathrm{Re}-\mathrm{Br} ; \mathrm{C} 1-\mathrm{Re}-\mathrm{Br}^{\prime}$	89.9; 91.4	
$\mathrm{C} 1-\mathrm{Re}-\mathrm{N} 1$	179.5(5)	91.5(6)
$\mathrm{C} 1-\mathrm{Re}-\mathrm{N} 2$	93.5(5)	174.0(6)
$\mathrm{Cl}-\mathrm{Re}-\mathrm{N} 3$		99.2(6)
C2-Re-C3; $21-\mathrm{Re}-\mathrm{C} 3^{\prime}$	88.6; 85.9	87.7(7)
$\mathrm{C} 2-\mathrm{Re}-\mathrm{Br} ; \mathrm{C} 2-\mathrm{Re}-\mathrm{Br}^{\prime}$	88.8; 91.1	
$\mathrm{C} 2-\mathrm{Re}-\mathrm{N} 1$	92.2(6)	93.8(6)
$\mathrm{C} 2-\mathrm{Re}-\mathrm{N} 2$	178.2(6)	97.4(6)
$\mathrm{C} 2-\mathrm{Re}-\mathrm{N} 3$		172.7(6)
C3-Re-Br; ${ }^{\prime} 3^{\prime}-\mathrm{Re}-\mathrm{Br}^{\prime}$	176.55; 176.57	
C3-Re-N1; ${ }^{\prime}{ }^{\prime}-\mathrm{Re}-\mathrm{N} 1$	92.2; 93.0	176.9(6)
$\mathrm{C} 3-\mathrm{Re}-\mathrm{N} 2 ; \mathrm{C} 3^{\prime}-\mathrm{Re}-\mathrm{N} 2$	91.6; 94.1	91.3(6)
C3-Re-N3		92.3(6)
$\mathrm{Br}-\mathrm{Re}-\mathrm{N} 1 ; \mathrm{Br}^{\prime}-\mathrm{Re}-\mathrm{N} 1$	90.1;88.6	
$\mathrm{Br}-\mathrm{Re}-\mathrm{N} 2 ; \mathrm{Br}^{\prime}-\mathrm{Re}-\mathrm{N} 2$	91.1; 89.0	
$\mathrm{N} 1-\mathrm{Re}-\mathrm{N} 2$	86.0(4)	85.8(5)
$\mathrm{N} 1-\mathrm{Re}-\mathrm{N} 3$		85.8(5)
$\mathrm{Re}-\mathrm{Cl}-\mathrm{O} 1$	177(1)	178(2)
$\mathrm{Re}-\mathrm{C} 2-\mathrm{O} 2$	176(2)	178(2)
$\mathrm{Re}-\mathrm{C} 3-\mathrm{O} 3$; $\mathrm{Re}-\mathrm{C} 3^{\prime}-\mathrm{O} 3^{\prime}$	153.62; 163.12	177(2)
C6-C9-C10	173(2)	175(2)
C9-C10-C11	179(2)	176(2)
C23-C26-C27	178(2)	
C26-C27-C28	177(2)	

$\left.\mathrm{PPh}_{3}, \mathrm{P}(\mathrm{OMe})_{3}\right)$, with appropriate pyridines provide complexes $f a c-\operatorname{Re}(\mathrm{CO})_{3}\left(\eta^{1}-\mathrm{DPB}\right)_{2} \mathrm{Cl}(\mathbf{1}), f a c-\mathrm{Re}(\mathrm{CO})_{3}-$ $(\mathrm{PY})_{2} \mathrm{Br}(2 \mathrm{PY}=\mathrm{FPA} ; \mathbf{3}, \mathrm{L}=\mathrm{NPPA} ; 4, \mathrm{~L}=\mathrm{APPA})$, $\left[\mathrm{fac}-\mathrm{Re}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}\right]_{2}(\mu-\mathrm{PY})(5, \mathrm{PY}=\mathrm{BPEB} ; 6, \mathrm{PY}$ $\left.=\mathrm{DPB}),[\text { fac-Re(CO) })_{3}\left(\mathrm{P}(\mathrm{OMe})_{3}\right) \mathrm{Cl}\right]_{2}(\mu$-DPB) (7), and fac- $\mathrm{Re}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)(\mathrm{PY}) \mathrm{Cl}(8, \mathrm{PY}=\mathrm{NPPA} ; 9, \mathrm{PY}=$ FPA). Cationic complexes, $\left[f a c-\operatorname{Re}(\mathrm{CO})_{3}\left(2,2^{\prime}-\right.\right.$ bipy) (PY) I $\left[\mathrm{PF}_{6}\right](10, \mathrm{PY}=\mathrm{NPPA} ; 11, \mathrm{PY}=\mathrm{APPA} ; \mathbf{1 2}$, PY $=\mathrm{FPA}), \quad\left[\left\{f a c-\mathrm{Re}(\mathrm{CO})_{3}\left(2,2^{\prime} \text {-bipy }\right)\right]_{2}(\mu\right.$-PY) $)\left[\mathrm{PF}_{6}\right]_{2}$ (13, PY = DPB; 14, PY = BPEB), could also be synthesized from $\left[\left(\operatorname{Re}(\mathrm{CO})_{3}\left(2,2^{\prime}\right.\right.\right.$-bipy $\left.\left.)(\mathrm{MeCN})\right] \mathrm{PF}_{6}\right]$. The IR and ${ }^{1} \mathrm{H}$ NMR data for all these complexes are summarized in Table 5. Three strong carbonyl bands in the infrared spectra are consistent with the facial disposition of the three carbonyl ligands in these complexes. The α-ring protons of pyridines for the complexes 1-9 have chemical shifts which appear at lower field than those of free ligands [2] in the ${ }^{\mathrm{t}} \mathrm{H}$ NMR spectra. The lower δ values for the α-ring protons of pyridine in 10-14 are probably due to the ring current shielding caused by the bipy ligands.

The metal (rhenium) to π^{*} (pyridine) charge-transfer (MLCT) absorption spectra of all new complexes in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{CH}_{3} \mathrm{CN}$ are shown in Table 6. For complexes $5-9$, a good correlation (supplementary materials) exists between the MCLT bands and the solvent parameter, $E_{\text {MLCT }}^{*}$ (defined between 0.00 (isooctane) and 1.00 (dimethyl sulfoxide)) [15]. These MLCT transitions bands ($320-395 \mathrm{~nm}$) appear at shorter wavelengths than those ($390-600 \mathrm{~nm}$) in $\mathrm{W}(\mathrm{CO})_{4}(\mathrm{~L})(\mathrm{PY})$ and $\left[\mathrm{W}(\mathrm{CO})_{4}(\mathrm{~L})\right]_{2}(\mu-\mathrm{PY})(\mathrm{L}=\mathrm{CO}$, phosphine, phosphite; PY, PY' = DPB, BPEB, FPA, NPPA, APPA) [2], and exhibit only minor blue shift as the solvent polarity increases. This phenomenon is similar to that found in fac- $\mathrm{ClRe}(\mathrm{CO})_{3}(\mathrm{~L})_{2}\left(\mathrm{~L}=4\right.$-phenylpyridine, 4.4^{\prime}-bipyridine) [16] and could be attributed to the higher oxidation state of rhenium atom $(+1)$ than tungsten (0), which greatly raises the energy separation between metal d orbitals and pyridyl π^{*} orbitals. In accordance with this argument, the influence of ancillary ligands and substituents of pyridines on the metal to π^{*} (pyridine) charge-transfer bands is found to be smaller for the above new complexes than for tungsten analogues. It is peculiar that complexes with APPA ligands have MLCT bands of longer wavelength than those with NPPA ligands (i.e. $\mathbf{4}$ vs. $\mathbf{3}, 11$ vs. 10). We suspect that the rhenium fragment in $\mathbf{4}$ or $\mathbf{1 1}$ actually acts as an induc-

[^1]Table 5
IR spectra in the $\nu(\mathrm{CO})$ region and ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}(\mathrm{H})$ NMR spectra of compounds

Compound	$\begin{aligned} & \nu(\mathrm{CO}),(\nu(C \equiv C))^{a} \\ & \left(\mathrm{~cm}^{-1}\right) \end{aligned}$	$\begin{aligned} & { }^{1} \mathrm{H} \\ & \delta(\mathrm{ppm}){ }^{\mathrm{b}, \mathrm{c}}, J(\mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & { }^{31} \mathrm{P}(\mathrm{H}\} \\ & \delta(\mathrm{ppm}){ }^{\mathrm{b}, \mathrm{~d}}, J(\mathrm{~Hz}) \end{aligned}$
1	2027 vs, 1925 s, 1891 s	$\begin{aligned} & \mathrm{NC} H\left(8.91, \mathrm{~d}, 2 \mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=6.8\right) ; \mathrm{NC} H(8.68, \mathrm{~d}, 2 \mathrm{H}, \\ & \left.{ }^{3} J(\mathrm{H}-\mathrm{H})=6.0\right) ; \mathrm{NCHC} H\left(7.72, \mathrm{~d}, 2 \mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=6.8\right) ; \\ & \mathrm{NCHCH}\left(7.54, \mathrm{~d}, 2 \mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=6.0\right) \end{aligned}$	
2	2026 vs, 1925 s, 1892 m	$\begin{aligned} & \mathrm{NCH}\left(8.70, \mathrm{~d}, 4 \mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=6.7\right) ; \mathrm{NCHCH}(7.28 \text {, } \\ & \left.\mathrm{d}, 4 \mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=6.7\right) ; \mathrm{C} H(4.55, \mathrm{~s}, 4 \mathrm{H}) ; \mathrm{C} H \\ & (4.35, \mathrm{~s}, 4 \mathrm{H}) ; \mathrm{C}_{5} H_{5}(4.24, \mathrm{~s}, 10 \mathrm{H}) \end{aligned}$	
3	2028 vs, 1929 s, 1892 m	$\begin{aligned} & \mathrm{NCH} H\left(8.84, \mathrm{~d}, 2 \mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=6.8\right) ; \mathrm{NCH}(8.25, \mathrm{~d}, 2 \mathrm{H}, \\ & \left.{ }^{3} J(\mathrm{H}-\mathrm{H})=8.9\right) ; \mathrm{NCHC} H\left(7.71, \mathrm{~d}, 2 \mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=8.9\right) ; \\ & \mathrm{NCHCH}\left(7.41, \mathrm{~d}, 2 \mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=6.8\right) \end{aligned}$	
4	2026 vs, 1925 s, 1891 m	$\begin{aligned} & \mathrm{NCH}\left(8.78, \mathrm{~d}, 2 \mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=6.1\right) ; \mathrm{NCHCH}(7.51 \text {, } \\ & \left.\mathrm{d}, 2 \mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=6.1\right) ; \mathrm{CHCNH}_{2}(7.32, \mathrm{~d}, 2 \mathrm{H}, \\ & \left.{ }^{3} J(\mathrm{H}-\mathrm{H})=8.2\right) ; \mathrm{C} H \mathrm{CHCNH}_{2}\left(6.70, \mathrm{~d}, 2 \mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=8.2\right) \text {; } \\ & \mathrm{N} \mathrm{H}_{2}(5.31, \mathrm{~s}, 2 \mathrm{H}) \end{aligned}$	
5	2031 vs, 1938 s, 1893 s	$\begin{aligned} & \mathrm{NCH}\left(8.74, \mathrm{~d}, 4 \mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=6.8\right) ; \mathrm{C}_{6} H_{4}(7.58, \mathrm{~s}, 4 \mathrm{H}) ; \\ & \mathrm{PPh} 3(7.48-7.27, \mathrm{~m}, 30 \mathrm{H}) ; \mathrm{NCHCH}(7.04, \\ & \left.\mathrm{d}, 4 \mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=6.8\right) \end{aligned}$	$P(17.5, \mathrm{~s})$
6	2032 vs, 1938 s, 1892 s	$\mathrm{NCH}\left(8.92, \mathrm{~d}, 4 \mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=6.9\right) ; \mathrm{PPh}_{3}$ and NCHC H (7.56-7.34, m, 34 H)	$P(21.5, \mathrm{~s})$
7	2040 vs, 1951 s, 1902 s	$\mathrm{NCH}\left(9.26, \mathrm{~d}, 4 \mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=6.6\right)$; $\mathrm{NCHC} H(7.78$, d, $\left.4 \mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=6.6\right)$; $M e\left(3.73, \mathrm{~d}, 18 \mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=23.4\right)$	$P(126, \mathrm{~s})$
8	2031 vs, 1938 s, 1893 s	$\begin{aligned} & \mathrm{NCH}\left(8.90, \mathrm{~d}, 2 \mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=6.8\right) ; \mathrm{CHCNO}_{2}(8.32, \\ & \left.\mathrm{d}, 2 \mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=8.7\right) ; \mathrm{CHCHCNO} 2(7.91, \mathrm{~d}, 2 \mathrm{H}, \\ & \left.{ }^{3} J(\mathrm{H}-\mathrm{H})=8.7\right) ; \mathrm{PPh}_{3} \text { and } \mathrm{NCHCH}(7.93-7.38, \mathrm{~m}, 32 \mathrm{H}) \end{aligned}$	$P(21.1, \mathrm{~s})$
$9^{\text {e }}$	$\begin{aligned} & 2030 \mathrm{vs}, 1934 \mathrm{~s}, 1890 \mathrm{~s}, \\ & (\underline{2205} \mathbf{w}) \end{aligned}$	$\begin{aligned} & \mathrm{NCH} H\left(8.77, \mathrm{~d}, 2 \mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=6.7\right) ; \mathrm{PP} h_{3}(7.60-7.30, \mathrm{~m}, 15 \mathrm{H}) ; \\ & \mathrm{NCHC} H\left(7.23, \mathrm{~d}, 2 \mathrm{H}^{3} J(\mathrm{H}-\mathrm{H})=6.7\right) ; \\ & \mathrm{C}_{5} H_{4}\left(4.62, \mathrm{t}, 2 \mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=1.8\right) ; \mathrm{C}_{5} H_{4} \\ & \left(4.42, \mathrm{t}, 2 \mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=1.8\right) ; C_{p}(4.29, \mathrm{~s}, 5 \mathrm{H}) \end{aligned}$	$P(20.7, \mathrm{~s})$
10	2036 vs, 1929 s	$\begin{aligned} & \text { bipy-6,6' }\left(9.48, \mathrm{~d}, 2 \mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=7.3\right) ; \text { bipy-3,3'} \\ & \left(8.74, \mathrm{~d}, 2 \mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=7.8\right) ; \mathrm{NC} H(8.62, \mathrm{~d} 2 \mathrm{H}, \\ & \left.{ }^{3} J(\mathrm{H}-\mathrm{H})=6.6\right) ; \mathrm{C} H \mathrm{CNO}_{2}\left(8.29, \mathrm{~d}, 2 \mathrm{H}, 3^{3} J(\mathrm{H}-\mathrm{H})=8.7\right) ; \\ & b_{i p y}=5,5^{\prime}\left(8.01, \mathrm{dt}, 2 \mathrm{H}, \mathrm{~J}^{J(\mathrm{H}-\mathrm{H})=7.3 ; 1.1) ;}\right. \\ & \mathrm{C} H \mathrm{CHCNO}{ }_{2}\left(7.83, \mathrm{~d}, 2 \mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=8.7\right), \mathrm{NCHCH} \\ & \left(7.60, \mathrm{~d}, 2 \mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=6.6\right) \end{aligned}$	$\begin{aligned} & P\left(-138, \text { hept, }{ }^{1} J(P-F)=\right. \\ & 696) \end{aligned}$
11	2032 vs, 1925 s	$\begin{aligned} & \text { bipy-6,6' }\left(9.46, \mathrm{~d}, 2 \mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=7.4\right) ; \text { bipy- } 3,3 \\ & \left(8.72, \mathrm{~d}, 2 \mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=8.0\right) ; \text { bipy }-4,4^{\prime} \\ & \left(8.48, \mathrm{~d}, 2 \mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=8.0\right) ; \mathrm{NC} H(8.44, \mathrm{~d}, 2 \mathrm{H}, \\ & \left.{ }^{3} J(\mathrm{H}-\mathrm{H})=6.6\right) ; \text { bipy-5, 5' }(8.00, \mathrm{dt}, 2 \mathrm{H}, J(\mathrm{H}-\mathrm{H}) \\ & =7.4 ; 1.1) ; \mathrm{NCHCH} H\left(7.35, \mathrm{~d}, 2 \mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=6.6\right) ; \\ & \mathrm{C} H \mathrm{CNH}_{2}\left(7.23, \mathrm{~d}, 2 \mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=8.6\right) ; \\ & \mathrm{C} \mathrm{HCHCNH}_{2}\left(6.66, \mathrm{~d}, 2 \mathrm{H}^{3}{ }^{3} J(\mathrm{H}-\mathrm{H})=8.6\right) ; \mathrm{N} H_{2} \\ & (5.34, \mathrm{~s}, 2 \mathrm{H}) \end{aligned}$	$\begin{aligned} & P\left(-138, \text { hept, }{ }^{1} J(\mathrm{P}-\mathrm{F})=\right. \\ & 696) \end{aligned}$
12^{e}	2036 vs, 1935 s, (2204 m)	$\begin{aligned} & \text { bipy-6,6' }\left(9.46, \mathrm{~d}, 2 \mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=7.4\right) ; \text { bipy-3, } 3^{\prime} \\ & \left(8.72, \mathrm{~d}, 2 \mathrm{H},,^{3} J(\mathrm{H}-\mathrm{H})=6.5\right) ; \text { bipy-4,4'4 } \\ & (8.48, \mathrm{dt}, 2 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=6.5 ; 1.2) ; \mathrm{NC} H(8.45, \mathrm{~d}, 2 \\ & \left.\mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=6.8\right) ; b i p y-5,5^{\prime}(7.99, \mathrm{dt}, 2 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=7.4 ; 1.9) ; \\ & \mathrm{NCHC} H\left(7.39, \mathrm{~d}, 2 \mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=6.8\right) ; \\ & \mathrm{C}_{5} H_{4}\left(4.55, \mathrm{t}, 2 \mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=1.8\right) ; \mathrm{C}_{5} H_{4} \\ & \left(4.40, \mathrm{t}, 2 \mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=1.8\right), \mathrm{C}_{5} H_{5}(4.22, \mathrm{~s}, 5 \mathrm{H}) \end{aligned}$	$\begin{aligned} & P\left(-138, \text { hept, }^{1} J(\mathrm{P}-\mathrm{F})=\right. \\ & 696) \end{aligned}$
13	2036 vs, 1933 s	$\begin{aligned} & \text { bipy-6,6' }\left(9.44, \mathrm{~d}, 2 \mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=7.3\right) ; \text { hipy }-3,3^{\prime} \\ & \left(8.71, \mathrm{~d}, 2 \mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=7.7\right) ; \mathrm{NC} H(8.61, \mathrm{~d}, 2 \\ & \left.\mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=6.8\right) ; \text { bipy }-4,4^{\prime}(8.45, \mathrm{dt}, 2 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=7.7 ; 1.4) ; \\ & \text { bipy-5,5 } 5^{\prime}(7.98, \mathrm{dt}, 2 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=7.3 ; 1.1) ; \\ & \mathrm{NCHC} H\left(7.56, \mathrm{~d}, 2 \mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=6.8\right) \end{aligned}$	$\begin{aligned} & P\left(-138, \text { hept, }{ }^{1} J(\mathrm{P}-\mathrm{F})=\right. \\ & 696) \end{aligned}$
14	2036 vs, 1930 s, (2243 w)	$\begin{aligned} & \text { bipy }-6,6^{\prime}\left(9.46, \mathrm{~d}, 2 \mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=7.3\right) ; \text { bipy }-3,3^{\prime} \\ & \left(8.72, \mathrm{~d}, 2 \mathrm{H}, 3^{3} J(\mathrm{H}-\mathrm{H})=7.9\right) ; \mathrm{NC} H(8.56, \mathrm{~d}, 2 \\ & \left.\mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=6.7\right) ; \text { bipy }-4,4^{\prime}(8.47, \mathrm{dt}, 2 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=7.9 ; 1.5) ; \\ & \text { bipy }-5.5^{\prime}(7.99, \mathrm{dt}, 2 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=7.3 ; 1.3) ; \\ & \mathrm{NCHCH}\left(7.52, \mathrm{~d}, 2 \mathrm{H},{ }^{3} J(\mathrm{H}-\mathrm{H})=6.7\right) \end{aligned}$	$\begin{aligned} & P\left(-139, \text { hept, }{ }^{1} J(\mathrm{P}-\mathrm{F})=\right. \\ & 696) \end{aligned}$

Table 6
UV spectra (MLCT) ${ }^{\text {a }}$ and redox potentials ${ }^{\text {b }}$ for complexes at 298 K

Complex	$\lambda_{\text {max }}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\lambda_{\text {max }} \mathrm{CH}_{3} \mathrm{CN}$	$E_{\mathrm{ox}}\left(\Delta E_{\mathrm{p}}\right) / \operatorname{Re}(+1 /+2)$	$E_{\text {red }}\left(\Delta E_{\mathrm{p}}\right) / P Y(0 /-1) ; P Y(-1 /-2)^{*}$
1	345 (sh)	not soluble	+1.09 (i)	-1.79 (i); - 2.11 (140)
2	327	323	$+0.20(67)^{c},+1.05(i),+1.28$ (i)	-2.18(113); -2.41(107)
3	345 (sh)	not soluble		
4	370	370	+0.56 (i) ${ }^{\text {d }}, 1.01$ (i), 1.33 (i)	-2.23 (i); -2.39 (153)
5	350	345	+1.10(i)	-1.87(59); $\frac{-2.02 \text { (i)* }}{}$
6	353	342	+1.11 (i)	-1.63(98); -1.92 (120)*
7	344	337	+ 1.12 (i), 1.52 (i)	-1.61 (83); -1.88 (140) ${ }^{*}$
8	340 (sh)	326	+1.10(i)	-1.40 (88) ${ }^{\mathrm{c}}, \underline{-1.79(78)^{*}}$
9	326	322	$+0.20(93){ }^{\mathrm{c}},+1.06(i)$	-2.36 (i)
10	340 (sh)	330 (sh)	+1.33(104)	$\begin{aligned} & -1.38(68)^{\mathrm{e}},-1.62(71)^{\mathrm{f}},-1.75(\mathrm{i}), \\ & -2.07(\mathrm{i})^{\mathrm{e}} \end{aligned}$
11	$380{ }^{8}$	$374{ }^{8}$	+0.59 (i) ${ }^{\text {d }}$, 1.39 (i)	-1.62(116) ${ }^{\text {f }},-1.83(80)^{\mathrm{h}}, \underline{-2.12(i)}$
12	340 (sh)	330 (sh)	+0.16(64) ${ }^{\text {c }}, \underline{+1.35}(\mathrm{i})$	-1.63(121) ${ }^{\text {f }},-1.85$ (i) ${ }^{\text {h }}, \underline{-2.13(i)}$
13	349	340	+1.38(100)	-1.37 (i), -1.56 (i) ${ }^{\text {f }},-1.70(\mathrm{i})$
14	354	345	+1.40(86)	-1.60 (i) ${ }^{\text {f }}, \underline{-2.09(i)}$
DPB				-2.22 (i), -2.37 (i)
BPEB				-2.39 (i)
FPA				>-2.89
NPPA				-1.42 (100), - 2.12 (205)
APPA			+ 1.09 (i)	-1.43 (i), -2.01 (i), -2.21 (i)

${ }^{\mathrm{a}}$ MLCT $=$ rhenium $\mathrm{d} \pi$ to pyridine π^{*} charge transfer; the $\lambda_{\text {max }}$ values are in units of nm. ${ }^{\mathrm{b}}$ Analyses performed in $10^{-3} \mathrm{M}$ deoxygenated $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1-9)$ or $\mathrm{CH}_{3} \mathrm{CN}(10-14)$ solutions containing 0.1 M TBAP , scan rate is $80 \mathrm{mV} \mathrm{s}^{-1}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ or $100 \mathrm{mV} \mathrm{s}{ }^{-1}$ ($\mathrm{CH}_{3} \mathrm{CN}$). All potentials in volts vs. ferrocene (0.00 V with peak separation of 105 mV in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 77 mV in $\mathrm{CH}_{3} \mathrm{CN}$); scan range +1.5 to -2.5 V ; (i) $=$ irreversible process; $\Delta E_{\mathrm{P}}=E_{\mathrm{pa}}-E_{\mathrm{pc}}(\mathrm{mV}) .{ }^{\mathrm{c}} E_{\mathrm{ox}}(\mathrm{Fe}(+2 /+3)) .{ }^{\mathrm{d}}$ Oxidation of $\mathrm{NH}_{2} \cdot{ }^{\mathrm{e}}$ Reduction of $\mathrm{NO}_{2} \cdot{ }^{\mathrm{f}} E_{\mathrm{red}}$ (bipy $(0 /-1)$). ${ }^{\mathrm{g}}$ The MLCT band is assigned as the rhenium $\mathrm{d} \pi$ to bipy π^{*} charge transfer. ${ }^{\mathrm{h}} E_{\text {red }}$ (bipy $(-1 /-2)$).
tive acceptor, similar to those reported by Marks and coworkers [5a] and Zyss and coworkers [5b].

Redox potential values obtained from cyclic voltammetry data of the compounds in this study are also listed in Table 6. It was known that $\mathrm{Re}($ bipy $)(\mathrm{CO})_{3} \mathrm{Cl}$ decomposed in $\mathrm{CH}_{3} \mathrm{CN}$ upon oxidation or reduction [17]; therefore, electrochemical measurements for $1-9$ were performed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. It should be more difficult to remove an electron from an $\operatorname{Re}(\mathrm{I})$ than from a $\mathrm{W}(0)$
atom of the same electronic configuration [18], and the oxidation potentials of Re atoms in $1-14$ are indeed significantly more positive (greater than 300 mV) than those in $\mathrm{W}(\mathrm{CO})_{4}(\mathrm{~L})(\mathrm{PY})$ and $\left[\mathrm{W}(\mathrm{CO})_{4}(\mathrm{~L})\right]_{2}(\mu-\mathrm{PY})$. Cationic complexes, 10-14, also have higher $E_{O X}$ than those of $1-9$, as expected.

Reduction potentials for PY π^{*} levels of the complexes are consistent with the energy stabilization of π^{*}-acceptor orbital upon ligation of PY. The two re-

Fig. 1. ortep drawing of $\mathbf{2}$. Thermal ellipsoids are drawn with 30% probability boundaries.

Fig. 2. ORTEP drawing of $[12]^{+}$. Thermal ellipsoids are drawn with 30% probability boundaries.
duction potentials for 2 and 4 (Table 6) are more likely to be due to the one-electron reduction of the first PY and the second PY ligands respectively, instead of the one-electron reduction and the second electron reduction on the same PY ligand, since the latter is expected to be energetically less favored [19]. The presence of two reduction potentials in 2 and 4 also implies that the π^{*} orbitals of two PY ligands are mutually affected through the metal. An electron-withdrawing substituent evidently shifts the PY π^{*}-acceptor orbital to a lower energy and an electron-donating substituent does the opposite (e.g. 8 vs. 9 and 10 vs. 11). The potential difference between the oxidation and the first reduction potentials, $E_{\text {ox }}-E_{\text {red }}(0 / 1-)$, is also in agreement with the larger MLCT transition energy for aforementioned rhenium complexes $(2.70-3.48 \mathrm{eV})$ than for $\mathrm{W}(\mathrm{CO})_{4}(\mathrm{~L})$ (PY) and $\left[\mathrm{W}(\mathrm{CO})_{4}(\mathrm{~L})\right]_{2}(\mu-\mathrm{PY})(1.69-2.94 \mathrm{eV})$.

The molecular structures of $2 \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 12 . $2 \mathrm{H}_{2} \mathrm{O}$ were established by X-ray diffraction analysis. The ORTEP drawings of 2 and [12] ${ }^{+}$are shown in Figs. 1 and 2 . The rhenium atom resides in an approximately octahedral environment with the facial disposition for the three carbonyl ligands. The $\mathrm{Re}-\mathrm{C}-\mathrm{O}$ linkage (176(2)-178(2) $)$ does not deviate significantely from linearity except for $\mathrm{Re}-\mathrm{C} 3-\mathrm{O} 3 / \mathrm{Re}-\mathrm{C}^{\prime}-\mathrm{O}^{\prime}$ (153.62/ $163.12 \AA$) of 2 owing to the disordered carbonyl ligand. The carbonyl $\mathrm{Re}-\mathrm{C}$ distances range from 1.86 to 2.01 \AA. Other relevant crystal data also appear to be normal: the alkynyl $\mathrm{C} \equiv \mathrm{C}$ distances range from $1.13(2)$ to $1.20(2)$ \AA. The $\mathrm{Re}-\mathrm{N}$ distances $(2.14(1)-2.252(5) \AA)$ are comparable with literature values [20].

In summary, we synthesized rhenium carbonyls containing ethynyl pyridyl ligands. As a complement to our previous study [2], we also demonstrated that variation of metal atoms could potentially provide an efficient way to tune molecules for electron transfer and nonlinear optical applications.

4. Supplementary materials available

Complete crystal data, all bond distances and angles, positional parameters, anisotropic thermal parameters and isotropic thermal parameters, and a table of rhe-nium-to-PY charge transfer absorption maxima for all complexes in different solvents, electronic spectra of 3 , $\mathbf{8}$, and $\mathbf{1 0}$, a plot of rhenium-to-PY charge transfer absorption maxima of 5-9 against solvent parameter, cyclic voltammograms of 10 and 8, and stereoviews for complexes $2 \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $12 \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (21 pages), are available from the authors.

Acknowledgement

We thank the National Science Foundation of the Republic of China for financial support (Grants NSC-84-2113-M-001-017).

References

[1] N.J. Long, Angew. Chem. Int. Ed. Engl., 34 (1995) 21.
[2] J.T. Lin, S.S. Sun, J.J. Wu, L.S. Lee, K.J. Lin and Y.F. Huang, Inorg. Chem., 34 (1995) 2323.
[3] (a) D.R. Kanis, M.A. Ratner and T.J. Marks, Chem. Rev., 94 (1994) 195; (b) M. Bourgault, W. Tam and D.F. Eaton, Organometallics, 9 (1990) 2856.
[4] G.L. Geoffroy and M.S. Wrighton (eds.), Organometallic Photochemistry, Academic Press, New York, 1979.
[5] (a) D.R. Kanis, P.G. Lacroix, M.A. Ratner and T.J. Marks, J. Am. Chem. Soc., 116 (1994) 10089; (b) M. Bourgault, C. Mountassir, H.Le. Bozec, I. Ledoux, G. Pucetti and J. Zyss, J. Chem. Soc. Chem. Commun., (1993) 1623.
[6] (a) U.H.F. Bunz, V. Enkelmann and J. Räder, Organometallics, I2 (1993) 4745; (b) J.E.C. Wiegelmann and U.H.F. Bunz, Organometallics, 12 (1993) 3792; (c) C.L. Sterzo and J.K. Stille, Organometallics, 9 (1990) 687; (d) C.L. Sterzo, M.M. Miller and J.K. Stille, Organometallics, 8 (1989) 2331.
[7] (a) G. Jia, R.J. Puddephatt, J.J. Vittal and N.C. Payne, Organometallics, 12 (1993) 263; (b) M. Zeldih, K. Wynne and H.R. Allcock (eds.), Inorganic and Organometallic Polymers, Advances in Chemistry Series 224, American Chemical Society, Washington, DC, 1988.
[8] (a) E.E. Bunel, L. Valle, N.L. Jones, P.J. Carroll, M. Gonzalez, N. Munoz, and J.M. Manriquez, Organometallics, 7 (1988) 789; (b) V. Grosshenny and R. Ziessel, J. Chem. Soc. Dalton Trans., (1993) 817; (c) A. Das, J.P. Maher, J.A. McCleverty, J.A.N. Badiola and M.D. Ward, J. Chem. Soc. Dalton Trans., (1993) 681; (d) K.T. Potts, C.P. Horwitz, A. Fessak, K.M. Keshararz, K.E. Nash and P.J. Toscano, J. Am. Chem. Soc., 15 (1993) 10444; (e) J.E. Sutton and H. Taube, Inorg. Chem., 20 (1981) 3125.
[9] R.B. King (ed.), Organometallic Synthesis, Transition-Metal Compounds, Vol. 1, Academic Press, New York, 1965.
[10] F. Zingales, U. Sartorelli, F. Canziani and M. Raveglia, Inorg. Chem., 6 (1967) 154.
[11] J.V. Caspar and T.J. Meyer, J. Phys. Chem., 87 (1983) 952.
[12] E.J. Gabe, Y. LePage, J.P. Charland, F.L. Lee and P.S. White, J. Appl. Crystallogr., 22 (1989) 384.
[13] P. Main, S.J. Fiske, S.E. Hull, L. Lessinger, G. Germain, J.P. Declercq and M.M. Woolfson, multan80 A system of computer
programs for the automatic solution of crystal structures from X-ray diffraction data, 1980 (Universities of York, UK and Louvain, Belgium).
[14] (a) G. Wilkinson, F.G.A. Stone and E.W. Abel (eds.), Comprehensive Organometallic Chemistry, Vol. 4, Pergamon, Oxford, UK, 1982, Chapter 30; (b) R.H. Reimann and E. Singleton, J. Organomet. Chem., (1973) 309; (c) F. Zingales, U. Sartorelli and A. Trovati, Inorg. Chem., 6 (1967) 1246.
[15] (a) W. Kaim and S. Kohlmann, Inorg. Chem., 25 (1986) 3306; (b) D.M. Manuta and A.J. Lees, Inorg. Chem., 22 (1983) 3825; (c) W. Kaim, S. Kuhlmann, S. Ernst, B. Olbrich-Deussner, C. Bessenbacher and A. Schulz, J. Organomet. Chem., 321 (1987) 215.
[16] P.J. Giordano and M.S. Wrighton, J. Am. Chem. Soc., 101 (1979) 2888.
[17] (a) J.K. Hino, L.D. Ciana, W.J. Dressick and B.P. Sullivan, Inorg. Chem., 31 (1992) 1072; (b) A.I. Breikss and H.D. Abruna, J. Eletroanal. Chem., 201 (1986) 347.
[18] M.M. Zulu and A.J. Lees, Organometallics, 8 (1989) 955.
[19] M.M. Zulu and A.J. Lees, Inorg. Chem., 27 (1986) 1139.
[20] P.C. Chen, M. Curry and T.J. Meyer, Inorg. Chem., 28 (1989) 2271.

[^0]: * Corresponding author. Fax: 886-2-7831237; e-mail: jtlin@chem. sinica.edu.tw.

[^1]: ${ }^{\text {a }}$ Measured in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. ${ }^{\text {b }}$ Measured in acetone- d_{6} except for 2,3 , and 5 , which were measured in CDCl_{3}. ${ }^{6}$ Reported in ppm relative to $\delta\left(\mathrm{Me}_{4} \mathrm{Si}\right) 0 \mathrm{ppm}$. ${ }^{\sigma}$ Reported in ppm relative to $\delta\left(85 \% \mathrm{H}_{3} \mathrm{PO}_{4}\right) 0 \mathrm{ppm}$. ${ }^{\text {e }}$ The signals due to the $\mathrm{AA}^{\prime} \mathrm{MM}^{\prime}$ spin system in symmetrical Cp ligands are, due to their simple appearance, reported as triplets with coupling constants equal to half of the separation between the two outer lines. Abbreviations: $s=$ singlet, $d=$ doublet, hept $=$ heptet, quint $=$ quintet, $t=$ triplet, $m=$ multiplet.

